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The paper is devoted to a theoretical analysis of nonlinear two-dimensional waves on 
the surface of a liquid film freely falling down a vertical plate. Using a model system 
of equations, steady-state travelling periodical wave regimes have been found 
numerically. It is shown that some of them agree quantitatively with experimental 
results. The question of the stability of various wave regimes with respect to two- 
dimensional infinitesimal disturbances is examined. The most-amplified disturbances 
are evaluated. 

1. Introduction 
It was found experimentally by Kapitza & Kapitza (1949) that the flow of a thin 

viscous liquid layer is laminar for Re < 400-500, but the free surface, as a rule, is 
wavy. The flow can be divided into three sections : (i) an input section with a smooth 
free surface, (ii) a section of two-dimensional quasi-steady-state waves and (iii) a h a 1  
section where the film flow becomes three-dimensional (see Nakoryakov, Pokusaev 
& Alekseenko (1981) ; Alekseenko, Nakoryakov & Pokusaev (1985)). 

At present there are a great number of studies of the hydrodynamics of a wavy 
thin falling film in the literature. We discuss only the basic results, from our point 
of view, concerning the two-dimensional wave flow. 

The first analytical solution for flow with a smooth free surface was received by 
Nusselt (1916). The profile of the longitudinal velocity in this case is a semiparabolic 
one, the film surface has a velocity maximum and the flow rate of liquid is 
proportional to the third power of the film thickness. 

The first results concerning the stability of the laminar flow of a thin layer of 
viscous fluid with a free surface seem to have been obtained by Kapitza (1948). He 
has shown that if the value of the Reynolds number is higher than a critical one, a 
laminar-wave flow is energetically more preferable than a laminar parallel one. 

Benjamin (1957) and Yih (1963) using an approximate analytical version of 
OrrSommerfeld’s equation have found that film flow with a smooth free surface is 
unstable for any small flow rates. There are infinitesimal long-wave disturbances 
which exponentially amplify with time. Analogous results were obtained numerically 
by Krantz & Goren (1970) for the range of Reynolds numbers from 1 to 700. 

The experiments carried out by Kapitza & Kapitza (1949) show that there is some 
critical flow rate at which waves on the liquid surface start to appear. If the flow rate 
is less than the critical one the wave regime does not develop, and in addition, 
external disturbances disappear. The Kapitza conclusion on the existence of a critical 
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flow rate was further proved by some experimental works devoted to wave formation 
on the surface of a thin film (see, for example, Alekseenko et al. 1985). 

Thus, discrepancies between the predicted and experimental data are likely to be 
due to a too small length of test section, the essential dependence of wave structure 
on liquid feed, the effect of surfactants on the flow, amongst other factors. 

In  their experimental investigation of nonlinear two-dimensional steady-state 
travelling waves, Kapitza & Kapitza (1949) used a short vertical section of a glass 
tube (250 mm long and 35 mm in diameter), with a film of water or alcohol falling 
down the outer surface of the tube. To regulate the wave regimes of the flow, the flow 
rate was pulsed. The wave amplitudes, velocities, lengths of waves, and thicknesses 
of films were measured. The regular steady-state travelling waves observed were 
classified by the authors as ‘periodical ’ and ‘single ’. Experimental results only 
described for a periodical regime for Re = 5-20. 

Further experimental results, more convenient and comprehensive for comparison 
with theory, were obtained by Nakoryakov et al. (1981) and Alekseenko et al. (1985). 
They presented amplitudes, phase velocity of waves, and mean thicknesses as 
functions of wavelength parameters. Conclusions on the regions of existence of 
regular waves were also suggested. To regulate the wave formation, the flow rate at 
the input section was pulsed. There were two characteristic types of wave profiles: 
wave form was similar to a sine one if the frequency was high, and essentially more 
nonlinear (an abrupt front to the wave and backflow from it)  if the frequency was 
low. 

The full problem of nonlinear film wave flow is difficult to consider theoretically, 
and therefore various simplified models are used, as a rule, to solve it. 

Using the small long-wave parameter 8 ( E  is the ratio of the mean film thickness to 
the lengthscale of the waves in the x-direction) and the restriction E <Re 5 1 the 
problem can be reduced to a single evolutional equation for the film thickness. In this 
case the solution of the Navier-Stokes equation is represented in the form of a series 
of E .  Then all the quantities one wants to define can be represented as polynomials 
of y with coefficients that are functions of only the thickness h and its derivatives. 
From this representation the kinematic condition on the film surface is used for 
deriving an equation for h. Benney (1966) considered the case when the surface 
tension was negligible and reduced the problem to a single evolutional equation. 
Gjevik (1970) included the effect of the surface tension and studied steady finite- 
amplitude periodic waves. In  the case of small-amplitude nonlinear disturbances and 
for the Reynolds number Re < 1 Nepomnyashchy (1974) reduced the problem to a 
single equation including the simplest nonlinear quadratic term. Its solution gives 
two different types of waves which qualitatively agree with those observed 
experimentally : wave regimes similar to sinusoidal ones were found by Nepo- 
mnyashchy (1974); and a wave family whose limit is a solitary wave was found by 
Tsvelodub (1980). The character of the branching periodical steady-state travelling 
wave solutions was studied by Bunov, Demekhin & Shkadov (1984) and Tsvelodub 
& Trifonov (1989). It was demonstrated by Sivashinsky & Michelson (1980) that this 
equation had stochastic solutions. 

In  spite of qualitative agreement between the calculated wave form and the 
experimental one the quantitative comparison is not satisfactory. In the experiments 
waves were observed for moderate Reynolds number and their amplitude was of the 
same order as the value of mean film thickness. Therefore, it is necessary to take into 
account nonlinear terms of order higher than quadratic. 

Kapitza (1948) suggested using the integral method to study the problem of two- 
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dimensional wave film flow at moderate Reynolds numbers. He used the similarity 
of the longitudinal velocity profile and considered only long-wave disturbances. 
However, when deriving the model system, he mistakenly omitted some terms, the 
values of which were the same as those taken into account. Shkadov (1967) derived 
this system correctly. There is a great number of theoretical and experimental works 
where the correctness of similarity of a longitudinal velocity profile assumption was 
evaluated. Thus, Berbente & Ruckenstein (1968), when solving the problem for 
weakly nonlinear steady-state waves used the long-wave assumption ; however, the 
velocity profile was expanded in powers of y/h.  Their results and the results obtained 
by Shkadov (1967), where an analogous problem was solved with the similarity 
assumption, are in good agreement. 

Some results have been obtained by a direct numerical simulation of the 
Navier-Stokes equation for two-dimensional waves with the long-wave assumption 
(see Geshev & Ezdin 1985) ; Demekhin, Demekhin & Shkadov 1983; Bach & Viladsen 
1984). They are also in qualitative agreement with the integral theory. Nakoryakov 
et al. (1977) demonstrated experimentally that the velocity profile is close to a 
semiparabolic one for the greater part of the wave. 

Shkadov’s system consists of two equations, for the instantaneous liquid flow rate 
and the instantaneous thickness of the film. The family of weakly nonlinear steady- 
state solutions of this system was obtained by Shkadov (1968), who demonstrated, 
for a moderate Reynolds number, that the waves of this family were unstable. The 
negative solitary waves of this system were numerically calculated by Shkadov 
(1977). 

2. Governing equation 
We consider a two-dimensional flow of a viscous incompressible liquid on a vertical 

plate. A schematic of the flow and the coordinate system are shown on figure 1. Using 
dimensionless variables the governing equations of the fluid motion and the 
boundary conditions are as follows : 

au* av* -+- = 0, ax* ay* 

(2.1 b)  

( 2 . l c )  

u* = 2)* = 0, y* = 0, (2.1 d ,  e )  

0 ,  y* = h*(x*, t*).  ax* 
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FIGURE 1. Schematic 

Y 

representation of a vertical falling liquid film. 

Here 

Fi is the film number, u is the velocity in the x-direction, v is the velocity in the y- 
direction, p is the pressure, p: is the atmospheric pressure, g is the acceleration due 
to gravity, v is the kinematic viscosity, p is the density, u is the coefficient of surface 
tension, h is the instantaneous thickness of the film. 

It is appropriate here to use some scale related to the wavelength L as a 
characteristic scale of length in the x-direction, the mean film thickness h, as that in 
the y-direction and the mean thickness velocity uo as a velocity scale. 

Further, we shall consider only long-wave disturbances, therefore B 4 1 .  For the 
range of Reynolds numbers under consideration c 4 Re 5 l/s, after neglecting terms 
smaller than O ( E )  the system (2 .1)  is substantially simplified. In dimensional form it 
is as 

(2.2a) 

(2.2 b, c )  

au 
a Y  
_ -  - 0, y = h(x, t). ( 2 . 2 e )  
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In  addition, the following kinematic condition on the free surface must be 
satisfied : 

ah ah 
v = -+u- y = h(x, t ) .  at ax’ 

Deriving equations (2 .2)  from (2 .1)  we retain the term containing the capillary 
pressure in the boundary condition. This is possible if the film number Pi - Re5/ss ,  
which is generally true for most experiments. 

The system (2 .2)  was probably firstly derived by Levich (1959).  It is easily seen 
that its solution is 

p = p,, h = h, = const. 

This solution is related to the Nusselt smooth flow and exists for any liquid flow 
rates. The other solutions of (2 .2)  are difficult to find. Therefore, to simplify this 
problem it is convenient to use the assumption self-similarity of the velocity profile : 

u(yl 5, t )  = V ( X ,  t )  ( y / h ( x ,  t )  - y2 /2h2(x ,  0 ) .  (2 .4)  
For long waves this assumption is reasonable enough, but it is extremely difficult 

to evaluate its correctness mathematically. However, the experimental results and 
some direct numerical simulations show that this assumption is valid for the values 
of Reynolds numbers under consideration. The physical correctness of relation (2 .4)  
may be proved by comparing the solutions of the simplified system with the 
experimental results. 

Taking into account that the pressure in equations (2 .2)  is a function of only x and 
t we substitute the profile (2 .4)  into (2 .2) ,  and integrating over the y-direction from - 

0 to h ( x , t )  gives 
- + 1 , 2 -  - = g h - - + - -  3vq aha3h 
at ax a (“3 h h2 a x 3 ’  

ah aq -+- = 0. 
at ax 

( 2 . 5 ~ )  

(2 .5b)  

Here q = s u dy and the kinematic condition (2 .3)  was used in the derivation of 
(2 .5) .  The system of equations (2 .5)  was first obtained by Shkadov (1967).  I n  the 
work presented here the wave regimes of a flowing film will be studied on the basis 
of (2 .5) .  

The solution of (2 .5)  related to the Nusselt smooth regime is 

h = h,, q = qN = gh$/3v. 
To investigate its stability with respect to infinitesimal disturbances 

h = hN+h’, ( 2 . 6 ~ )  
q = qN+q’, (2 .6b)  

(h’, q’) N exp [ ia(x-c t ) ] ,  ( 2 . 6 ~ )  
the system (2 .5)  is linearized with respect to h’, p’ and it is not difficult then to obtain 
the condition for their resolution : 

3(c* - 3 )  
Re, 

+ i a * ( 0 . 2 ~ * ~  - 1.2(c* - + ia*3We, = 0. 
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Here c* = ch,/q,, u* = uh,, Re, = q N / v ,  We, = crh,/pq&. 
Since the stability with respect to disturbances limited throughout the space at 

any moment of time is here of particular interest, the wavenumber in (2 .6)  is assumed 
to be real. Then the values of complex phase velocity c may be found from (2 .7) .  If 
Im (c)  > 0 the disturbance is amplified and if Im (c) < 0 it disappears. As shown by 
Alekseenko et al. (1985) it follows from (2 .7)  that for any Re, there exists a neutral 
wavenumber a,* such that all the disturbances with a* < a,* are unstable and those 
with a* > a,* disappear. From (2 .7)  we have 

Yu. Ya. Trifonov and 0. Yu. Tsvelodub 

The celerity of a neutral disturbance does not depend on wavelength and is equal to 

Its dimensional wavelength is 
c,* = 3.  

As the small parameter E ,  introduced above, we may take 

It is now possible to estimate the limits of the long-wave approximation. Using the 
relation for We, and Nusselt's formula for qN it  is not difficult to obtain 

E X  G31(.i). 1 Re5 

The value of P i  is extremely high for most liquids used in practice. Thus, for water 
FiA x 10. It is not difficult to obtain from (2 .8)  that if Re x lo2 then E - 0.1. 

Using the neutral disturbance wavelength as a scale it is convenient to write the 
coordinates and variables as follows : 

Then (2 .5)  become 

q* a3h* 
= Fh*-Z-+3h*- 

h*2 ax*3 ' 

ah* aq* -+- = 0 .  
at* ax* 

(2 .10a)  

(2.10 b )  

Here Z = (3We/Re2)l, F = (We/3Fr2)t, We = ah,/pqi, Re = qo/v ,  Fr = q:/gh:. 

a,, = 1. 
This variable transformation normalizes the unstable wavenumber range and now 

To find nonlinear steady-state travelling solutions of ( 2 .  lo), 

h* = h*(x*-c*t*), q* = q*(x*-C*t*), 

it is convenient to use the wavelength-averaged thickness and flow rate as scales of 
h and q,  respectively. This choice of scales is more suitable for comparing the 
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calculated and experimental results. As a rule, the Reynolds number based on the 
mean liquid flow rate is a natural and easily controlled parameter for an experiment 
on waves travelling down a liquid film and the results are often represented as 
functions of this parameter. It is evident that the value of F is not predetermined for 
such a choice of scales, since now the relation between h, and q, is not prescribed by 
the Nusselt formula. Therefore, in (2.10) we may fix only one of two parameters, F 
or 2. The other one may be determined from the solution. Here, the parameter Z will 
be fixed. 

The dimensional variables are determined by the formulae 

(2.11a, b )  

(2.11c, d )  

3. Numerical procedure for finding steady-state waves 

the above-mentioned choice of scales we have 
For steady-state travelling waves equation (2. l o b )  is solved. Taking into account 

a(.$) = l + c ( h ( . $ ) - l ) ,  .$ = z - c t .  (3.1) 
Eliminating the flow rate a(.$) from equation ( 2 . 1 0 ~ )  we obtain the equation 

for h(€J. 

for the periodical solutions : 
Using the condition ( h )  = 1 from (3.2), we find the correlation between F and 2 

(3.3) 

Here the angle brackets denote averaging over a wavelength. 
The periodic wave with wavenumber a is presented as a Fourier series 

m 
h = C h, exp [ianfl. 

h, = h-,. 

-m 

Since h is a real function then - 

(3.4) 

The bar denotes the complex conjugate. The relation h, = 1 is due to the norm 
condition. 

Taking the first L f l  harmonics in the set (3 .4) ,  let us substitute this into (3 .2)  and 
(3 .3) .  Putting the coefficients with the same exponents equal to zero we obtain a 
system of N +  1 complex equations for the real unknowns F ,  c and N complex (hk1,  
. . . , h*N,2)  : 

( - c'ian - F )  h, + 1 .%, + ZY, - 3xn = 0,  (3.5) 
F = ZY,, 

n = f l ,  + 2 , . . .  kL8. 
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Here qn, Yn, xn are the Fourier harmonics of 
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1 + c ( h -  1)  d3h 
Y =  h2 > X ' h d p  

Since (3.2) is invariant under a coordinate shift 

6 --f 5 + const, 

the origin of coordinates was chosen such that 

Im (h,)  = 0. 

Thus the system (3.5) is complete. The Newton-Kantorovich method was used to 
solve it numerically. To describe this method briefly, we write the system (3.5) 
schematically as follows : 

q(xy,x;, . . . xR/2), i = 1 , .  ..la. (3.6) 

Let us take xo = {xy, . . . , xR/,} to be an approximation of the solution of (3.6). Using 
the Taylor's series representation of the solution of (3.6) in the neighbourhood of xo 
and taking into account only linear terms we obtain equations to find the corrections 
Ax, of the xo approximation. 

These equations are as follows : 

If the xo approximation is in the solution attraction region then the numerical 
procedure converges quickly. The matrix aFJax, is computed by use of a difference 
scheme. 

The nonlinear terms qn, Yn, xn in (3.5) are computed through a pseudo-spectral 
method, in which a transform to real space is made; the functions q, Y, x are 
computed in real space and then a transform back to Fourier space is performed by 
use of a fast Fourier transformation procedure. 

Reducing the set (3.4), the number of harmonics was taken so as to satisfy the 
relation 

I ~ , / ~ I / s u P  lhnl < lop3* 
For this purpose N had to be varied over the range from 16 to 128 depending on the 
values a and 2. 

4. Results of the numerical simulation and comparison with experiments 
Periodical steady-state solutions of equation (2.10) with wavenumbers close to the 

neutral ones were first obtained analytically by Shkadov (1967). Using his results as 
an initial approximation and taking a small enough step in the parameter a into the 
region of linear instability, steady-state solutions were found successfully for all 
values of the parameter 2 and the smallest values of a under consideration. 
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z=9 z= 1 z = 0.1 

a w = 0.2 

FIQURE 2. Profiles of the wave thickness generated from smooth flow. 

Figure 2 shows typical thickness profiles for various values of Z and a. Here the 
dimensionless thickness is calculated from the mean level and the vertical line 
corresponds to h = 0.1. 

As the calculated results show, for every value of a there exists Z* such that the 
thickness profile is practically invariant for Z < Z* (see, for example, figure 2 for 
a = 0.8 and 0.5). For 2 = const the thickness profiles are close to a sine wave when the 
wavenumber is higher than a*@). For a < a* the difference is more fundamental (see 
figure 2) and in the limit a+O the waves transform into a series of solitary waves 
- negative solitons. Shkadov (1977) was the first to find such soliton solutions of 
(2.10). The waves of this family close to solitary ones have velocities c < 3 and there 
are characteristic oscillations behind the wave. 

Chang (1987, 1989) used the normal form method to analyse the bifurcations of 
Benney’s (1966) equation. This approach gives the result that the travelling waves 
appear from a Hopf bifurcation at  the equilibrium point h = 1, h’ = 0, h = 0 of 
equations (3.2), as the parameter a decreases through a = 1, with Z fixed. The limit 
cycle expands as a decreases, and disappears at a homoclinic bifurcation as a + O+. 

Prior to comparing the calculated and experimental results it is appropriate to 
describe qualitatively the pattern of waves flowing down a film, using mainly the 
experiments by Kapitza t Kapitza (1949). 

To realize a two-dimensional film flow it is necessary to provide homogeneous 
conditions of flow over the tube perimeter. The film flow always becomes wavy when 
the flow rate is above a critical-level, and the wave profile is mainly irregular. Only 
in rare and accidental circumstances was some periodicity observed when the waves 
appeared naturally. 

If an external periodical impulse was given to the liquid flow not only regular wave 
profiles but also two basic stable types of wave regimes were observed. The first was 
termed ‘periodical’ by Kapitsa (1949). Its  thickness profile is close to a sine one for 
small enough flow ratea ; the velocity c weakly depends on the liquid flow rate and 
the wavelength. It was also established that there was some impulse frequency for 
which the wave pattern was most stable and spread regularly throughout the tube 
length. This periodical regime appears even for very small external pulses. 

The latter types of wave flow regimes develop if the impulses are fewer but larger. 
In this C ~ J X  one can see how the set of solitary waves begins to run over the tube wall. 
The shape of a solitary wave consists of ‘the base wave ’ with a sharp front and ‘ small 
waves’ before the front. The velocity of this type of wave depends essentially on the 
distance between the solitary waves, as the measurements show. 

18 FLY 229 
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A = 10.8 mm 
# 

0.35 nun 

" 
RQURE 3. Comparison of theoretical (-) and experimental (----) thickness profiles. 

Re = 7.2, v = 4.9 x lo-'' m2/s, u/p = 59 x lo-'' mS/s2, A = 10.8 mm. 

1 1  
0 2.5 5.0 

z-i?i 
FIGURE 4. Wave velocity 8s. 2-6. Theoretical data (curves) : line 1 ,  u = 0.8; 2, or = 0.5; 3, u = 0.2. 
Symbols, experimental data: 0 ,  water ( v  = 1.14 x lo-'' m*/s, a l p  = 72.9 x lo-' m3/s2, FiA = 8.8); 
0, a water-glycerin film (v = 11.2 x lo-'' m2/s, u / p  = 55.9 x lo-'' m3/s2, FiA = 3.56); 0, v = 
2.16 x lo-' ma/s, a l p  = 65.2 x 10-6 m*/s2, FiA = 6.75; x , v = 7.2 x lo-' m2/s, u / p  = 57.6 x 

m3/s2, FiA = 4.21. 

A comparison between the calculated thickness profile (solid line) and the 
experimental one (dot-dashed line) is illustrated in figure 3. The experimental data 
were obtained by Nakoryakov et al. (1981). Here Re = 7.2, Y = 4.9 x m2/s, 
cr/p = 59 x m3/s2, h = 10.8 mm. The calculated velocity is c, = 212 mm/s, the 
experimental one is c, = 220 mm/s. These values are in satisfactory agreement. 

The calculated long waves of this family have a shape differing from that in the 
experiment, as illustrated in figure 2. 

Calculated wave velocities as functions of 2 are presented in figure 4. The greater 
the value of 2 the smaller the value of Re, as follows from (2.11a). Here line 1 
corresponds to a = 0.8, line 2 to  a = 0.5, and line 3 to a = 0.2. The experimental 
points obtained by Nakorykov et al. (1981) corresponding to waves close to sine ones 
are also presented for water and water-glycerin in this figure. The value of Reynolds 
number Re varied in this experiment. 

The experimental results presented in figure 4 were obtained by imposing 
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1 2 
Z-k 

FIGURE 5. Amplitude us. Z-&. Theoretical data (curves): line 1 ,  a = 0.8; 2, a = 0.5; 3, a = 0.2. 
Points show experimental data: 0,  water, v = 1 . 1 4 ~  m2/s, u/p = 74x lo-'' m3/ss; A, ethyl 
alcohol, v = 2.02 x m2/s, u / p  = 29 x lo-' m3/s2. 

pulsations with various frequency and for various liquid flow rates. As follows from 
figure 4, the wave velocity c depends weakly on a (or on the frequency w ,  w = c/h, 
h = 2x/a) in the range of small 2 4  5 1 (that is small Re x 1.5F@Z-f?f). This agrees 
with Kapitsa & Kapitsa's experiments. For 2-A 2 1 (for water, as an example, this 
corresponds to Re 2 15) the wavelength dependence becomes more significant. As the 
flow rate increases, the value of c becomes constant at 2-A 2 2*+ if the parameter 
a is fixed. For waves with a 2 0.5, as seen from figure 4, the following estimate is 
valid : 

z*-A x 2. 

For water, it corresponds to Re x 30. 
The analogous dependence of the wave amplitude A = hmax-hmi, on 2 for the 

same values of wavenumber a as in figure 4, are presented in figure 5. Here the points 
correspond to the experimental results of Kapitza for water and ethyl alcohol. There 
is a good agreement between the theory and experiment here too. The amplitude of 
steady-state waves sharply increases, beginning from a non-zero value of 2-6, as is 
demonstrated by figure 5. This fact explains to some extent the critical Reynolds 
number, Re,, of wave formation in the experiments. To compare the critical Re, 
determined theoretically and experimentally it is convenient to use the formula 
suggested by Kapitza : 

Re, = 0.61Fik. 

Using (2.1 1) and taking into account the approximation F x 2, this formula may be 
written as 

Z$i x 0.74. 

This value of Z corresponds to A x 0.2 in figure 5. It is interesting to note that 2, 
corresponds closely to the beginning of a sharp variation in the variable (F /Z) i  (figure 
6). Here lines 1-3 correspond to the same values of a as in figures 4 and 5.  

in-2 
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t 
1 .o 

0.95 

\\ 1 

0.90 \ 
0 1 2 

z-?i 
FIGURE 6. Relation between the dimensional and Nusselt mean thicknesses vs. 2-A. 

Theoretical data: line 1 ,  a = 0.8, 2, a = 0.5; 3, a = 0.2. 

0.1 6.5 
dI 

1 .o 

FIGURE 7. Amplitude us. a. Theoretical data: line 1, 2 = 10; 2, 2 = 1; 3, 2 = 0.1. 

The amplitudes as functions of the wavenumber a for three characteristic values 
of 2 are presented in figure 7. Here line 1 corresponds to 2 = 10, 2 corresponds to 
2 = 1, and 3 corresponds to 2 = 0.1. As follows from figure 7, the branching of new 
regimes from the solution h = 1 is of a soft type and the dependence A(a)  has a 
maximum. The amplitude A(a)  becomes constant if a decreases and the solution, as 
it was mentioned above, transforms into a set of solitary waves if a+ 0. 

The dependences of c and (F/Z); on a for the same values of 2 as in figure 7 are 
presented in figures 8 and 9 respectively. The velocity of the waves is always less than 
3 c < 3, as is shown in figure 8. 

The results presented above describe quite fully the steady-state travelling wave 
solutions of (2.10), branching from the smooth flow. The waves close to sine ones 
which were observed in the experiments correspond well quantitatively to some 
waves of this one-parameter family. 
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1 0. . I 0.5 1 .O 

U 

FIGURE 8. Wave velocity vs. a. Theoretical data: line 1, 2 = 10; 2, 2 = 1 ; 3, 2 = 0.1. 

A 

0.1 6.5 1:o - 
U 

FIGURE 9. Relation between the dimensional and Nusselt mean thicknesses vs. a. 
Theoretiea1data:line l , Z = 1 0 ; 2 , 2 = 1 ; 3 , Z = 0 . 1 .  

To determine which waves of this family can be experimentally seen it is necessary, 
as a minimum, to study the stability of the waves. 

5. The method of studying the stability of nonlinear wave regimes 

obtain the system 
Substituting h = h,([)+h’([, t) ,  q = qo(E)+q’(& t )  into (2.10) and linearizing it we 

h = 0, (5.1a) 

(5.1 b)  ah ah aq - -c-+-= 0, 
at a t  ag 
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to study the stability of the steady-state solution ho([ ) ,  qo([). Here the primes on 
disturbance values are omitted. 

Since the variable t is not explicitly incorporated in (5.1) the solution may be 
represented as 

h = e-7 WE), a = e-Ytal(E). (5.2a, b)  

Then the system of ordinary linear differential equations with periodic coefficients for 
h,,q, is 

-3ho-- d3h1 ( 1 . 2 $ $ + F + 2 Z g + 3 3 ) h 1  = 0 ,  ( 5 . 3 ~ )  
dC3 h: d k  

(5.3b) 

Since the disturbances are initially limited for all values of 5, solutions of (5.3) 
which are also limited for all E are of particular interest here. It follows from 
Floquet's theorem that such solutions are of the form 

h, = p,(E) eiaQc, q1 = Y(u(5) eiaQc, (5.4a, b) 

where p,, Yare the periodical functions of the same period as ho([) ,  qo(E), and Q is a 
real parameter. Substituting (5.4) into (5.3) we obtain 

d Y  
- y Y +  (A +iaQB) Y+B--((P+iaQD-3ia3Q3h,)p, 

dE 

--yp,+iaQY+--iaQcg,-c- d Y  dp, = 0, (5.5b) 
d t  dE 

where a0 B = 2 . 4 - - ~  
h0 

Thus the investigation of the stability of periodic steady-state travelling wave 
solutions ho([) ,  a,([) with respect to infinitesimal two-dimensional disturbances is 
reduced to studying the spectrum of those eigenvalues for different values Q for 
which (5.5) has periodic solutions of the same period as for h,, qo. The wave is stable 
if, for any Q ,  all y have Re(?) 3 0. 

It follows from (5.4) that it is sufficient to consider Q within any interval of unit 
length, for example [ -0.5;0.5].  Taking the complex conjugate of (5.5) it is easy to 
become convinced that y(Q) = ?( -Q). Thus it is sufficient to consider the solutions 
(5.5) for 0 < Q < 0.5. 
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The results which were obtained for Q = 0 describe the stability with respect to 
special but important class of disturbances. They have the same period as the wave 
flow under consideration. In this case one of the solutions of (5.5) is readily found 
analytically : 

This result is a consequence of Andronov-Vitt's theorem concerning the presence of 
at  least one zero Lyapunov's index for a closed trajectory. To h d  the other y the 
problem was solved numerically in the general case Q $. 0. 

After Fourier transforming (5.5), we obtain an infinite system of linear algebraic 
homogeneous equations to determine P),,, Y,. Setting all tp,,, Y,,(lnl > equal to 
zero, we obtain its finite approximation : 

y = 0, tp = h;, Y = q;. (5 .6)  

Here 

f N  

cvn-k yk+ wfl-k%c) = yyfl,  
k--iN 

(iaQ + ian) Y, - (iaQc + iacn) tp,, = ytp,,, 
n = -1a/2,. . . ,&? 

vn-k = (A + iaQB)fl-k + iUkB,-k, 

Wfl-k = - (P + iaQD - 3ia3Q3h0),,-, 
- iak(D - ~ C T ~ Q ~ ~ ~ ) , , - ~  + (9ia3&k2 + 3ia3k3) hon-k. 

(5.7) 

6. An analytical investigation of long-disturbance stability 
As calculations show, the long modulated disturbances with Q 4 1 are important 

in that they are responsible for the sizes of stability zones, if any. Analytical methods 
may be used to investigate the increments of such disturbances. In  order to 
emphasize that only small Q are considered in this section this parameter will be 
denoted by E .  

Introducing the set of fast and slow variables 

50 = 5, 51 = 4, 
t, = €9, n = 1,2, 

one expands the solution of (2.10) as 

q = q o  + eq1-t Ezq2 + E3q3 + . . * ,  

h = hO+€h,+€2h,+€3h3+.. . .  

Here qo(E), ho([), the wave velocity c and the value of F have been previously 
determined. Functions ql ,  q,, q,, . . . , h,, h,, h, . . . depend on fast and slow variables. 
Further, we shall consider only those solutions for which the functions q,,, h,(n = 1, 
2 . .  .) depend on the fast variable E0 periodically with period 2n/a,where a is the 
wavenumber of the qo, ho solution. 

In the first power of B we have 

(6.1 b )  
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Its non-trivial solution i s  (5.6) : 
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here A is a function of the slow variables. 
In the second approximation, we have the inhomogeneous system 

Here L is the linear differential operator of (6.1). 
To solve (6 .2) ,  it  follows from general theory that the right-hand side of (6.2) 

should be orthogonal to the solutions of a homogeneous problem conjugated with 
(6.1). Multiplying ( 6 . 1 ~ )  by Y and (6.1 b )  by cp, summing them and integrating over 
to from 0 to A ,  the equations of the conjugated problem are readily obtained: 

One of its solutions may be written as 

(Y* ,q*)  = ( 0 , l ) .  (6.3) 

It was verified by a numerical investigation of the spectrum of the conjugated 
operator L that there are no other non-trivial solutions of the conjugated problem a t  
non-specific points. 

The right-hand part of (6.2) is clearly orthogonal to (6 .3) .  As system (6.2) is linear, 
its solutions may be presented as 

( 6 . 4 ~ )  

(6.4b) 

The functions a1,pl, yl, uZ,P2, yz depend on the variable to and may be found 
numerically. The equations for these functions are obtained by substituting (6.4) in 
(6.2), giving three systems of inhomogeneous ordinary differential equations for the 
functions (ul, u2), (pl, pz), (yl, y,) to calculate. The left-hand side of these systems is 
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that of (6.1) with (q,, h,) replaced by (al ,az),  (pl,p2), ( y l , y z ) ,  respectively. Since the 
solution of the homogeneous system may be added to that of the inhomogeneous one, 
the normalizing conditions of orthogonality were used : 

By use of the Fourier transformation the differential equations reduced to linear 
algebraic ones. 

The following inhomogeneous system of equations is obtained for the third 
approximation : 

L(q3, h3) = (913 9 2 )  (6.5) 

The orthogonality condition of the right-hand side of equation (6.5) to the solution 

The linear part of the resulting equation with respect to the function A(tl ,  El) is in 
of (6.3) is ( g 2 )  = 0, where ( ) denotes the wavelength average. 

the form 

To investigate the stability of qo, h, the nonlinear term O(A) is neglected. Substituting 
into (6.6) 

we obtain a quadratic equation for the complex value 7, from where it follows for 
a = Re (7) that 

A - e-@i &i, 
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If R, < 0, it is obvious that A increases with time, and the solution pol h, is unstable. 
If R, > 0, 7 takes an imaginary value. I n  this case, it is necessary to consider one 
more approximation. Omitting intermediate considerations, let us analyse the linear 
part of the equation following from the orthogonality condition : 

Here ,LA, pl, b, b,, d ,  d, are functions of to, obtained from the solution of the system 
when s3. 

Substituting into (6.8) 
A - exp[-~ltz-qt,+i6,1, (6.9) 

to determine 7, we arrive a t  a linear equation. It should be noted that since the 
quadratic equation to determine 7 is obtained from (6.7), both solutions of this 
equation have to be substituted one after the other into (6.8) instead of 7, and then 
the two values qi and 7; have to be found. If Re (7:) and Re (7;) are greater than zero, 
the initial solution is stable, and if at  least one of these real parts is less than zero, 
it is unstable. 

7. Results on nonlinear-regime stability 
The calculations on nonlinear-regime stability have shown that disturbances of the 

same periodicity are less dangerous than in the linear regime. Thus, for Q = 0 a range 
of steady wavenumbers exists for every Z .  It is quite wide - from the upper boundary 
of linear instability of a plane-parallel flow, a = 1, to the values of wavenumbers 
shown by Curve 1 on figure 10. 

The solutions under investigation are stable with respect to disturbances with 
Q 4= 0 over a narrower range of wavenumbers and only for sufficiently high values of 
Z and respectively low Re. The stability zone is shown in figure 10 by hatching. 

For nonlinear regimes with the wavenumbers lying on Curve 1 (figure 10) a neutral 
disturbance with Q = 0 exists for which Im(y)  =t= 0. This type of stability change 
corresponds to a Landau-Hopf bifurcation. The value of instability increment 
quickly increases below Curve 1, which is responsible, among other factors, for the 
absence of long waves such as ‘succession of negative solitons’. 

The region of wave regimes stable with respect to disturbances with various Q for 
2 = 5 is shown shaded in figure 11 (a). Here the behaviour of the real parts of the first 
four eigenvalues for different values of a is also shown (figure I t  b).  As is seen, the 
stability is defined by the behaviour of two eigenvalues which start from zero when 
Q = 0. This passage through zero determines the respective upper and lower 
boundaries of the stability region. Neutral disturbances on the boundaries of this 
region are of different type. On the upper boundary an imaginary part of the 
eigenvalue is equal to zero and on the lower one the neutral disturbance has an 
oscillating component in time. 

As is seen from figure 12, as Z decreases, the interval of steady waves becomes 
narrower and shifts to smaller a. 

When Z < Z, ,  = 4 the stability region deviates from the axis Q = 0, i.e. for such 
Z there are always Q for which increasing disturbances are available at every a value. 



Nonlinear waves on the surface of a falling liquid film. Part 1 549 
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0 0.5 1 .o 
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FIQURE 10. The hatched region shows the zone of wave regimes stable with respect to two- 
dimensional disturbances. Between line a = 1 and line 1 the waves are stable with respect to 
disturbances of the same period. 
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FIQURE 11. (a) The hatched region shows the zone of wave regimes stable with respect to 
disturbances with various Q. (b) The behaviour of increments of the four most dangerous 
disturbances vs. Q. 

The calculated results are compared with the experimental data in figure 5.  A 
value of Z;$ = 0.78 is somewhat higher than the critical number for wave formation, 
Z$ m 0.74 ; however, as follows from the experiments, sinusoidal waves similar to 
steadily travelling ones are also observed when Z < 2, (figure 5). Thus, the 
instability to disturbances with Q =k 0 does not mean that such waves are impossible 
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I z =  10 

0.6 I A. 
r I I 
0 0.25 0.50 

Q 
FIGURE 12. The hatched regions show zones of wave regimes stable with respect to disturbances 

with various Q. 

to observe experimentally. However, the regimes unstable with respect to 
disturbances with Q = 0 are not realized experimentally. 

As follows from the results of calculations, sinusoidal waves are practically always 
unstable. Nevertheless, the data obtained by Alekseenko et al. (1985) show that there 
is a particular difference between the regimes’ stability. To interpret these data it is 
appropriate to analyse the values of increments for increasing disturbances. 

The cross-hatching in figure 13 shows the region of stable wavenumbers and the 
single hatching shows the region where disturbances grow rather slowly, and in this 
case the growth rate is S = -Re (7) < For the water-glycerine mixture, for 
example, they slightly distort a wave flow up to the distance I x 10-20 cm. Such 
regimes may be classified from an experimental point of view as steady-state 
travelling waves. Some experimental data can be explained more clearly if one 
postulates the assumption, which seems reasonable, that the external pulsations, 
cause a wave regime with a definite a do not allow disturbances with Q strongly 
differing from zero and, on the other hand, disturbances with small Q occur owing to 
the instability of the external pulsation generator. Thus, it becomes clear why an 
excited wave exists over greater distances than a naturally generated one. 
Disturbances with Q strongly differing from zero, which can occur for natural waves, 
make the waves unstable more quickly (their increment is much higher than that of 
the disturbances with small Q (see figure 11)). For the same reason, excited waves are 
observed over a wider range of wavenumbers. Also, since the upper boundary of 
weakly growing disturbances is close to the stability boundary for most Q, except for 
very low values Q < Q* (it may assumed that the generation of excited waves results 
in small Q > Q*), it is evident that expansion must be towards lower wavenumbers 
(figure 13). This was observed experimentally Alekseenko et al. (1985). 

Figure 14 displays the values of R,, Re (7:) and Re (7:) for the first family for 2 = 
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0.5 1 1 5  
0 0.2 0.4 

Q 
FIGURE 13. The hatched region shows the zone of wave regimes where the unstable disturbances 
grow slowly (6 = -Re (7) < lo-*)). The cross-hatching shows zones of wave regimes stable with 
respect to disturbances with various &. 

FIGURE 14. Results concerning the stability of wave regimes with respect to long modulated 
disturbances (small &). Here 2 = 10. If R,  < 0 (line 1) then the disturbances are increasing and the 
value of increment -&. If R, > 0 then the stability is determined by values of Re (7;) and Re (7;) 
(lines 2 and 3), the value of the disturbance increment -Q2. 

10 versus the wavenumber (R, is plotted by line 1, Re (7;) by line 2 and Re (7;) by 
line 3). For R, > 0 line 1 is dashed, since at  those points the stability is defined by 
Re (7;) and Re (a:). The results presented in figure 14 are in agreement with those 
presented in figure 13. 
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1 2 3 4 5 
RejFik 

FIQURE 15. Line 1 ,  the neutral curve for smooth flow. Line 2, the neutral curve for the most 
dangerous disturbances with small Q ,  that is R, = 0. Line 3, Landau-Hopf bifurcation. This line 
corresponds to line 1 in figure 10. Points show the upper bound of existence of excited waves from 
experiments. 

As follows from (6.9) and figure 14, when the disturbance increments are beyond 
the range of stable wavenumbers a on the lower boundary (where line 3 intersects the 
abscissa axis) they grow more slowly ( - 8 )  than on the upper boundary which almost 
coincides with the root of curve 1, where the increments grow -2. Thus, as was 
mentioned in $6, the unstable disturbances above the upper boundary of the stability 
zone and, respectively, under the lower one are of different types. The disturbances 
having the increment of -s are more dangerous. 

Figure 15 illustrates the comparison between the calculated data on the first- 
family wave stability and the upper bound of existence of excited waves found by 
Alekseenko et al. (1985). The experimental data are shown here by dots; line 1 is a 
neutral stability curve of plane-parallel flow down a slope, line 2 is a neutral curve 
for the most dangerous disturbances with small &, i.e. R, = 0, line 3 corresponds to 
line 1 in figure 10 and it is the line of wave stability with respect to disturbances of 
the same period as that of basic wave. As is shown in figure 15, lines 2 and 3 
correspond rather well to the experimental boundary of the existence of excited 
waves. 

8. Some remarks 
The investigation of the stability of stationary waves bifurcating from a plane- 

parallel regime allows the following conclusions to be drawn: 
(i) The solutions with wavenumbers lying between lines 1 and 3 (figure 15) may be 

distinguished in a narrow sense of stability. They are stable with respect to 
disturbances of the same periodicity. 

(ii) Regimes that are stable with respect to all plane disturbances, exist only for 
low Re (2 > 4). 

(iii) The length-modulated disturbances (small &) are of great significance from 
the viewpoint of experimental realization. Perturbation theory shows that there 
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exist two types of disturbances whose instability growth rates differ by an order of 
magnitude. The wave regimes between lines 1 and 2 (figure 15) are more unstable. 

The results obtained explain some experimental phenomena such as the difference 
in the evolution of naturally generated and excited waves and why long waves like 
a succession of negative solitons are not observed experimentally. Also, it becomes 
more clear why the external pulsations increase the region of steady-state travelling 
waves and expand possible wave regimes towards lower wavenumbers. 

The calculations on stability made it possible to narrow the range of possible wave 
regimes. 

The obtained results on stability allow a detailed bifurcation analysis of waves 
belonging to this family to be made and new types of periodic waves to be found. 
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